- 1.
Armitage, N. P., Mele, E. J. & Ashvin, V. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).
CAS
ArticleGoogle Scholar
2.
Wan, X., Turner, M. A., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2015).
Article
Google Scholar
3.
Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).
Google Scholar
4.
Yang, L. X. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys. 11, 728–732 (2015).
CAS
ArticleGoogle Scholar
5.
Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).
CAS
ArticleGoogle Scholar
6.
Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).
CAS
ArticleGoogle Scholar
7.
Kim, K. et al. Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal. Nat. Mater. 17, 794–799 (2018).
CAS
ArticleGoogle Scholar
8.
Sakai, A. et al. Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal. Nat. Phys. 14, 1119–1124 (2018).
CAS
ArticleGoogle Scholar
9.
Liu, D. F. et al. Magnetic Weyl semimetal phase in a Kagomé crystal. Science 365, 1282–1285 (2019).
CAS
ArticleGoogle Scholar
10.
Liu, E. et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018).
CAS
ArticleGoogle Scholar
11.
Belopolski, I. et al. Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet. Science 365, 1278–1281 (2019).
CAS
ArticleGoogle Scholar
12.
Chang, G. et al. Magnetic and noncentrosymmetric Weyl fermion semimetals in the RAlGe family of compounds (R = rare earth). Phys. Rev. B 97, 041104 (2018).
CAS
ArticleGoogle Scholar
13.
Suzuki, T. et al. Singular angular magnetoresistance in a magnetic nodal semimetal. Science 365, 377–381 (2019).
CAS
ArticleGoogle Scholar
14.
Puphal, P. et al. Topological magnetic phase in the candidate Weyl semimetal CeAlGe. Phys. Rev. Lett. 124, 017202 (2020).
CAS
ArticleGoogle Scholar
15.
Yang, H. Y. et al. Noncollinear ferromagnetic Weyl semimetal with anisotropic anomalous Hall effect. Phys. Rev. B 103, 115143 (2021).
CAS
ArticleGoogle Scholar
16.
Wei, H. et al. Crystal structural refinement for NdAlSi. Rare Metals 25, 355–358 (2006).
Google Scholar
17.
Lin, H., Rebelsky, L., Collins, M. F., Garret, J. D. & Buyers, W. J. L. Magnetic structure of UNi2Si2. Phys. Rev. B 43, 13232 (1991).
CAS
ArticleGoogle Scholar
18.
Wu, S. et al. Incommensurate magnetism near quantum criticality in CeNiAsO. Phys. Rev. Lett. 122, 197203 (2019).
CAS
ArticleGoogle Scholar
19.
Rossat-Mignod, J. et al. Phase diagram and magnetic structures of CeSb. Phys. Rev. B 16, 440–461 (1977).
CAS
ArticleGoogle Scholar
20.
Gignoux, D. & Schmitt, D. Competition between commensurate and incommensurate phases in rare-earth systems: effects on H-T magnetic phase diagrams. Phys. Rev. B 48, 12682 (1993).
CAS
ArticleGoogle Scholar
21.
Taylor, K. N. R. Intermetallic rare-earth compounds. Adv. Phys. 20, 551–660 (1971).
CAS
ArticleGoogle Scholar
22.
Jensen, J. & Mackintosh, A. R. Rare Earth Magnetism (Clarendon Press, 1991).
23.
Anisimov, V. I., Aryasetiawan, F. & Lichtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+ U method. J. Phys. Condens. Matter 9, 767 (1997).
CAS
ArticleGoogle Scholar
24.
Pizzi, G. et al. Wannier90 as a community code: new features and applications. J. Phys. Condens. Matter 31, 165902 (2020).
Article
Google Scholar
25.
Hosseini, M. V. & Askari, M. Ruderman-Kittel-Kasuya-Yosida interaction in Weyl semimetals. Phys. Rev. B 92, 224435 (2015).
Article
Google Scholar
26.
Chang, H.-R., Zhou, J., Wang, S.-X., Shan, W.-Y. & Di, X. RKKY interaction of magnetic impurities in Dirac and Weyl semimetals. Phys. Rev. B 92, 241103(R) (2015).
Article
Google Scholar
27.
Araki, Y. & Nomura, K. Spin textures and spin-wave excitations in doped Dirac-Weyl semimetals. Phys. Rev. B 93, 094438 (2016).
Article
Google Scholar
28.
Wang, S.-X., Hao-Ran Chang, H.-R. & Chang, H.-R. RKKY interaction in three-dimensional electron gases with linear spin-orbit coupling. Phys. Rev. B 96, 115204 (2017).
Article
Google Scholar
29.
Nikolić, P. Quantum field theory of topological spin dynamics. Phys. Rev. B 102, 075131 (2020).
Article
Google Scholar
30.
Nikolić, P. Dynamics of local magnetic moments induced by itinerant Weyl electrons. Phys. Rev. B 103, 155151 (2021).
Article
Google Scholar
31.
Schultz, A. J. et al. Integration of neutron time-of-flight single-crystal Bragg peaks in reciprocal space. J. Appl. Crystallogr. 47, 915–921 (2014).
CAS
ArticleGoogle Scholar
32.
Toby, G. H. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013).
CAS
ArticleGoogle Scholar
33.
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
CAS
ArticleGoogle Scholar
34.
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 11758 (1999).
Google Scholar
35.
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 11758 (1996).
Article
Google Scholar
36.
Wu, Q., Zhang, S., Song, H.-F., Troyer, M. & Soluyanov, A. A. WannierTools: an open-source software package for novel topological materials. Comput. Phys. Commun. 224, 405–416 (2018).
CAS
ArticleGoogle Scholar