Mak, Okay., Lee, C., Hone, J., Shan, J. & Heinz, T. Atomically skinny MoS2: a brand new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).
Wang, L. et al. Correlated digital phases in twisted bilayer transition steel dichalcogenides. Nat. Mater. 19, 861–866 (2020).
Tang, Y. et al. Simulation of Hubbard mannequin physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).
Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).
Seyler, Okay. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).
Tran, Okay. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).
Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).
Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).
Ribeiro-Palau, R. et al. Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018).
Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).
Chen, G. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 572, 215–219 (2019).
Jauregui, L. A. et al. Electrical management of interlayer exciton dynamics in atomically skinny heterostructures. Science 366, 870–875 (2019).
Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).
Tang, Y. et al. Tuning layer-hybridized moiré excitons by the quantum-confined Stark impact. Nat. Nanotechnol. 16, 52–57 (2021).
Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).
Sun, Z. et al. Giant nonreciprocal second-harmonic era from antiferromagnetic bilayer CrI3. Nature 572, 497–501 (2019).
Huang, B. et al. Tuning inelastic gentle scattering by way of symmetry management within the two-dimensional magnet CrI3. Nat. Nanotechnol. 15, 212–217 (2020).
Li, J. et al. Magnetically controllable topological quantum section transitions within the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B 100, 121103 (2019).
Göser, O., Paul, W. & Kahle, H. G. Magnetic properties of CrSBr. J. Magn. Magn. Mater. 92, 129–136 (1990).
Seyler, Okay. L. et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat. Phys. 14, 277–281 (2018).
Lee, Okay. et al. Magnetic order and symmetry within the 2D semiconductor CrSBr. Nano Lett. 21, 3511–3517 (2021).
Guo, Y., Zhang, Y., Yuan, S., Wang, B. & Wang, J. Chromium sulfide halide monolayers: intrinsic ferromagnetic semiconductors with massive spin polarization and excessive service mobility. Nanoscale 10, 18036–18042 (2018).
Wang, C. et al. A household of high-temperature ferromagnetic monolayers with locked spin-dichroism-mobility anisotropy: MnNX and CrCX (X=Cl, Br, I; C=S, Se, Te). Sci. Bull. 64, 293–300 (2019).
Wang, H., Qi, J. & Qian, X. Electrically tunable excessive Curie temperature two-dimensional ferromagnetism in van der Waals layered crystals. Appl. Phys. Lett. 117, 83102 (2020).
Wang, G. et al. Colloquium: excitons in atomically skinny transition steel dichalcogenides. Rev. Mod. Phys. 90, 21001 (2018).
Telford, E. J. et al. Layered antiferromagnetism induces massive unfavourable magnetoresistance within the van der Waals semiconductor CrSBr. Adv. Mater. 32, 2003240 (2020).
Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal right down to the monolayer restrict. Nature 546, 270–273 (2017).
Beck, J. Über Chalkogenidhalogenide des Chroms Synthese, Kristallstruktur und Magnetismus von Chromsulfidbromid, CrSBr. Z. für Anorg. und Allg. Chem. 585, 157–167 (1990).
Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software program challenge for quantum simulations of supplies. J. Phys. Condens. Matter 21, 395502 (2009).
Grimme, S. Semiempirical GGA‐kind density purposeful constructed with an extended‐vary dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).
Hybertsen, M. S. & Louie, S. G. Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B. 34, 5390 (1986).
Deslippe, J. et al. BerkeleyGW: a massively parallel pc bundle for the calculation of the quasiparticle and optical properties of supplies and nanostructures. Comput. Phys. Commun. 183, 1269–1289 (2012).
Felipe, H., Qiu, D. Y. & Louie, S. G. Nonuniform sampling schemes of the Brillouin zone for many-electron perturbation-theory calculations in decreased dimensionality. Phys. Rev. B. 95, 35109 (2017).
Deslippe, J., Samsonidze, G., Jain, M., Cohen, M. L. & Louie, S. G. Coulomb-hole summations and energies for GW calculations with restricted quantity of empty orbitals: a modified static the rest method. Phys. Rev. B. 87, 165124 (2013).
Rohlfing, M. & Louie, S. G. Electron-hole excitations and optical spectra from first rules. Phys. Rev. B. 62, 4927 (2000).
Wu, M., Li, Z., Cao, T. & Louie, S. G. Physical origin of large excitonic and magneto-optical responses in two-dimensional ferromagnetic insulators. Nat. Commun. 10, 2371 (2019).