- 1.Gileadi, E. Electrode Kinetics for Chemists, Chemical Engineers, and Materials Scientists (VCH, 1993).
- 2.Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer-Academic, 1999).
-
3.Srimuk, P., Su, X., Yoon, J., Aurbach, D. & Presser, V. Charge-transfer supplies for electrochemical water desalination, ion separation and the restoration of parts. Nat. Rev. Mater. 5, 517–538 (2020).
Google Scholar
-
4.Waegele, M. M., Gunathunge, C. M., Li, J. & Li, X. How cations have an effect on the electrical double layer and the charges and selectivity of electrocatalytic processes. J. Chem. Phys. 151, 160902 (2019).
Google Scholar
-
5.Fleischmann, S. et al. Pseudocapacitance: from elementary understanding to excessive energy vitality storage supplies. Chem. Rev. 120, 6738–6782 (2020).
Google Scholar
-
6.Brousse, T., Belanger, D., Long, J. W., Bélanger, D. & Long, J. W. To be or to not be pseudocapacitive? J. Electrochem. Soc. 162, A5185–A5189 (2015).
Google Scholar
-
7.Costentin, C., Porter, T. R., Save, J. & Savéant, J. M. How do pseudocapacitors retailer vitality? Theoretical evaluation and experimental illustration. ACS Appl. Mater. Interfaces 9, 8649–8658 (2017).
Google Scholar
-
8.
Mateos, M., Makivic, N., Kim, Y., Limoges, B. & Balland, V. Accessing the two-electron cost storage capability of MnO2 in gentle aqueous electrolytes. Adv. Energy Mater. 10, 2000332 (2020).
Google Scholar
-
9.Chang, J.-Okay., Lee, M.-T. & Tsai, W.-T. In situ Mn Okay-edge X-ray absorption spectroscopic research of anodically deposited manganese oxide with relevance to supercapacitor purposes. J. Power Sources 166, 590–594 (2007).
Google Scholar
-
10.Liu, L. et al. The origin of electrochemical actuation of MnO2/Ni bilayer movie derived by redox pseudocapacitive course of. Adv. Funct. Mater. 29, 1806778 (2019).
Google Scholar
-
11.Chen, D. et al. Probing the cost storage mechanism of a pseudocapacitive MnO2 electrode utilizing in operando Raman spectroscopy. Chem. Mater. 27, 6608–6619 (2015).
Google Scholar
-
12.Athouël, L. et al. Variation of the MnO2 birnessite construction upon cost/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte. J. Phys. Chem. C 112, 7270–7277 (2008).
Google Scholar
-
13.Yang, L. et al. Investigation into the origin of excessive stability of δ-MnO2 pseudo-capacitive electrode utilizing operando Raman spectroscopy. Nano Energy 30, 293–302 (2016).
Google Scholar
-
14.Kanoh, H., Tang, W., Makita, Y. & Ooi, Okay. Electrochemical intercalation of alkali-metal ions into birnessite-type manganese oxide in aqueous answer. Langmuir 13, 6845–6849 (1997).
Google Scholar
-
15.Arias, C. R. et al. New insights into pseudocapacitive charge-storage mechanisms in Li-birnessite kind MnO2 monitored by quick quartz crystal microbalance strategies. J. Phys. Chem. C 118, 26551–26559 (2014).
Google Scholar
-
16.Toupin, M., Brousse, T. & Bélanger, D. Influence of microstructure on the cost storage properties of chemically synthesized manganese dioxide. Chem. Mater. 14, 3946–3952 (2002).
Google Scholar
-
17.Leong, Z. Y. & Yang, H. Y. A research of MnO2 with totally different crystalline kinds for pseudocapacitive desalination. ACS Appl. Mater. Interfaces 11, 13176–13184 (2019).
Google Scholar
-
18.Lanson, B., Drits, V. A., Feng, Q. & Manceau, A. Structure of artificial Na-rich birnessite: proof for a triclinic one-layer cell. Am. Mineral. 87, 1662–1671 (2002).
Google Scholar
-
19.Dong, W., Rolison, D. R. & Dunn, B. Electrochemical properties of excessive floor space vanadium oxide aerogels. Electrochem. Solid State Lett. 3, 457–459 (2000).
Google Scholar
-
20.Ghodbane, O., Ataherian, F., Wu, N.-L. L. & Favier, F. In situ crystallographic investigations of cost storage mechanisms in MnO2-based electrochemical capacitors. J. Power Sources 206, 454–462 (2012).
Google Scholar
-
21.Shan, X. et al. Structural water and disordered construction promote aqueous sodium-ion vitality storage in sodium-birnessite. Nat. Commun. 10, 4975 (2019).
Google Scholar
-
22.Xiong, P. et al. Redox energetic cation intercalation/deintercalation in two-dimensional layered MnO2 nanostructures for high-rate electrochemical vitality storage. ACS Appl. Mater. Interfaces 9, 6282–6291 (2017).
Google Scholar
-
23.Shan, X. et al. Framework doping of Ni enhances pseudocapacitive Na-ion storage of (Ni)MnO2 layered birnessite. Chem. Mater. 31, 8774–8786 (2019).
Google Scholar
-
24.Julien, C. et al. Raman spectra of birnessite manganese dioxides. Solid State Ion. 159, 345–356 (2003).
Google Scholar
-
25.Kanke, Y., Kato, Okay., Takayama-muromachi, E., Isobe, M. & Kosuda, Okay. Structure of Okay0.5V2O5. Acta Cryst. C 46, 1590–1592 (1990).
Google Scholar
-
26.Beasley, C. A., Sassin, M. B. & Long, J. W. Extending electrochemical quartz crystal microbalance methods to macroscale electrodes: insights on pseudocapacitance mechanisms in MnOx-coated carbon nanofoams. J. Electrochem. Soc. 162, A5060–A5064 (2015).
Google Scholar
-
27.Zhang, Q. et al. The cost storage mechanisms of 2D cation-intercalated manganese oxide in several electrolytes. Adv. Energy Mater. 9, 1802707 (2019).
Google Scholar
- 28.Sparks, D. L. Environmental Soil Chemistry 2nd edn (Elsevier Science, 2003).
- 29.Ward, M. D. in Physical Electrochemistry: Principles, Methods, and Applications (ed. Rubinstein, I.) 293–338 (MarcelDekker, 1995).
-
30.Gao, Q. et al. Tracking ion intercalation into layered Ti3C2 MXene movies throughout size scales. Energy Environ. Sci. 13, 2549–2558 (2020).
Google Scholar
-
31.Zhang, Q. et al. The cost storage mechanisms of 2D cation-intercalated manganese oxide in several electrolytes. Adv. Energy Mater. 9, 1802707 (2018).
Google Scholar
-
32.Hsu, Y. Okay., Chen, Y. C., Lin, Y. G., Chen, L. C. & Chen, Okay. H. Reversible section transformation of MnO2 nanosheets in an electrochemical capacitor investigated by in situ Raman spectroscopy. Chem. Commun. 47, 1252–1254 (2011).
Google Scholar
-
33.Costentin, C., Porter, T. R. & Savéant, J. M. Nature of digital conduction in ‘pseudocapacitive’ movies: transition from the insulator state to band-conduction. ACS Appl. Mater. Interfaces 11, 28769–28773 (2019).
Google Scholar
-
34.Fung, V., Wu, Z. & Jiang, D. E. New bonding mannequin of radical adsorbate on lattice oxygen of perovskites. J. Phys. Chem. Lett. 9, 6321–6325 (2018).
Google Scholar
-
35.Tsai, W., Wang, R., Boyd, S., Augustyn, V. & Balke, N. Probing native electrochemistry by way of mechanical cyclic voltammetry curves. Nano Energy 81, 105592 (2020).
Google Scholar
-
36.Ma, Z. et al. Construction of hierarchical α-MnO2 nanowires@ultrathin δ-MnO2 nanosheets core-shell nanostructure with wonderful biking stability for high-power uneven supercapacitor electrodes. ACS Appl. Mater. Interfaces 8, 9050–9058 (2016).
Google Scholar
-
37.Banerjee, R. et al. Strain modulated superlattices in graphene. Nano Lett. 20, 3113–3121 (2020).
Google Scholar
-
38.Ando, Y., Okubo, M., Yamada, A. & Otani, M. Capacitive versus pseudocapacitive storage in MXene. Adv. Funct. Mater. 30, 2000820 (2020).
Google Scholar
-
39.Rowley, C. N. & Roux, B. The solvation construction of Na+ and Okay+ in liquid water decided from excessive stage ab initio molecular dynamics simulations. J. Chem. Theory Comput. 8, 3526–3535 (2012).
Google Scholar
-
40.Merlet, C. et al. On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nat. Mater. 11, 306–310 (2012).
Google Scholar
-
41.Boyd, S., Geise, N. R., Toney, M. F. & Augustyn, V. High energy vitality storage by way of electrochemically expanded and hydrated manganese-rich oxides. Front. Chem. 8, 715 (2020).
Google Scholar
-
42.Nakayama, M. et al. Cathodic synthesis of birnessite-type layered manganese oxides for electrocapacitive catalysis. J. Electrochem. Soc. 159, A1176–A1182 (2012).
Google Scholar
-
43.Yoon, Y., Yan, B. & Surendranath, Y. Suppressing ion switch allows versatile measurements of electrochemical floor space for intrinsic exercise comparisons. J. Am. Chem. Soc. 140, 2397–2400 (2018).
Google Scholar
-
44.Wang, R. et al. Operando atomic pressure microscopy reveals mechanics of structural water pushed battery-to-pseudocapacitor transition. ACS Nano 12, 6032–6039 (2018).
Google Scholar
- 45.Operation and Service Manual QCM200 Quartz Crystal Microbalance Digital Controller QCM25 5 MHz Crystal Oscillator (Stanford Research Systems, 2016).
-
46.Gabrielli, C., Keddam, M. & Torresi, R. Calibration of the electrochemical quartz crystal microbalance. J. Electrochem. Soc. 138, 2657–2660 (1991).
Google Scholar
-
47.Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid–metalamorphous–semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).
Google Scholar
-
48.Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).
Google Scholar
-
49.Blöchl, P. E. Projector augmented-wave methodology. Phys. Rev. B 50, 17953–17979 (1994).
Google Scholar
-
50.Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave methodology. Phys. Rev. B 59, 1758–1775 (1999).
Google Scholar
-
51.Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993).
Google Scholar
-
52.Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).
Google Scholar
-
53.Anisimov, V. I., Aryasetiawan, F. & Lichtenstein, A. I. First-principles calculations of the digital construction and spectra of strongly correlated methods: the LDA+U Method. J. Phys. Condens. Matter 9, 767–808 (1997).
Google Scholar
-
54.Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A. Consistent and correct ab initio parametrization of density practical dispersion correction (DFT-D) for the 94 parts H–Pu. J. Chem. Phys. 132, 154104 (2010).
Google Scholar
-
55.Chenoweth, Okay., Van Duin, A. C. T. & Goddard, W. A. ReaxFF reactive pressure area for molecular dynamics simulations of hydrocarbon oxidation. J. Phys. Chem. A 112, 1040–1053 (2008).
Google Scholar
-
56.Senftle, T. P. et al. The ReaxFF reactive force-field: improvement, purposes and future instructions. NPJ Comput. Mater. 2, 15011 (2016).
Google Scholar
-
57.Rappé, A. Okay., & Goddard, W. A. Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 95, 3358–3363 (1991).
Google Scholar