• 1.Kong, T., Guo, S., Ni, D. & Cava, R. J. Crystal construction and magnetic properties of the layered van der Waals compound VBr3. Phys. Rev. Mater. 3, 084419 (2019).

    CAS
    Article

    Google Scholar

  • 2.Kong, T. et al. VI3—a brand new layered ferromagnetic semiconductor. Adv. Mater. 31, 1808074 (2019).

    Article

    Google Scholar

  • 3.Song, T. et al. Switching 2D magnetic states through stress tuning of layer stacking. Nat. Mater. 18, 1298–1302 (2019).

    CAS
    Article

    Google Scholar

  • 4.Berthelot, R., Carlier, D. & Delmas, C. Electrochemical investigation of the P2–NaxCoO2 part diagram. Nat. Mater. 10, 74–80 (2011).

    CAS
    Article

    Google Scholar

  • 5.Steffen, R. Intercalation reactions of ruthenium-(III)-chloride through electron/ion switch. Solid State Ion. 22, 31–41 (1986).

    CAS
    Article

    Google Scholar

  • 6.Skyllas-Kazacos, M., Cao, L., Kazacos, M., Kausar, N. & Mousa, A. Vanadium electrolyte research for the vanadium redox battery—a assessment. ChemSusChem 9, 1521–1543 (2016).

    CAS
    Article

    Google Scholar

  • 7.Dey, A. N. & Sullivan, B. P. The electrochemical decomposition of propylene carbonate on graphite. J. Electrochem. Soc. 117, 222–224 (1970).

    CAS
    Article

    Google Scholar

  • 8.Fong, R. Studies of lithium intercalation into carbons utilizing nonaqueous electrochemical cells. J. Electrochem. Soc. 137, 2009–2013 (1990).

    CAS
    Article

    Google Scholar

  • 9.Jeong, S.-Ok., Inaba, M., Iriyama, Y., Abe, T. & Ogumi, Z. Electrochemical intercalation of lithium ion inside graphite from propylene carbonate options. Electrochem. Solid State Lett. 6, A13–A15 (2002).

    Article

    Google Scholar

  • 10.Yamada, Y., Takazawa, Y., Miyazaki, Ok. & Abe, T. Electrochemical lithium intercalation into graphite in dimethyl sulfoxide-based electrolytes: impact of solvation construction of lithium ion. J. Phys. Chem. C 114, 11680–11685 (2010).

    CAS
    Article

    Google Scholar

  • 11.Yamada, Y. et al. General statement of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes. ACS Appl. Mater. Interfaces 6, 10892–10899 (2014).

    CAS
    Article

    Google Scholar

  • 12.Yamada, Y. et al. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J. Am. Chem. Soc. 136, 5039–5046 (2014).

    CAS
    Article

    Google Scholar

  • 13.Suo, L. et al. ‘Water-in-salt’ electrolyte allows high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    CAS
    Article

    Google Scholar

  • 14.Wang, J. et al. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 7, 12032 (2016).

    CAS
    Article

    Google Scholar

  • 15.Yamada, Y. et al. Hydrate-melt electrolytes for high-energy-density aqueous batteries. Nat. Energy 1, 16129 (2016).

    CAS
    Article

    Google Scholar

  • 16.Wang, J. et al. Fire-extinguishing natural electrolytes for protected batteries. Nat. Energy 3, 22–29 (2018).

    CAS
    Article

    Google Scholar

  • 17.Yamada, Y., Wang, J., Ko, S., Watanabe, E. & Yamada, A. Advances and points in creating salt-concentrated battery electrolytes. Nat. Energy https://doi.org/10.1038/s41560-019-0336-z (2019).
  • 18.Yue, J. et al. Interface concentrated‐confinement suppressing cathode dissolution in water‐in‐salt electrolyte. Adv. Energy Mater. https://doi.org/10.1002/aenm.202000665 (2020).
  • 19.Sun, D., Okubo, M. & Yamada, A. Optimal water focus for aqueous Li+ intercalation in vanadyl phosphate. Chem. Sci. 12, 4450–4454 (2021).

    CAS
    Article

    Google Scholar

  • 20.Dokko, Ok. et al. Solvate ionic liquid electrolyte for Li–S batteries. J. Electrochem. Soc. 160, A1304–A1310 (2013).

    CAS
    Article

    Google Scholar

  • 21.Yamada, A. Enriching battery chemistry. Joule 2, 371–372 (2018).

    Article

    Google Scholar

  • 22.Mendiboure, A., Delmas, C. & Hagenmuller, P. Electrochemical intercalation and deintercalation of NaxMnO2 bronzes. J. Solid State Chem. 57, 323–331 (1985).

    CAS
    Article

    Google Scholar

  • 23.Dubouis, N. et al. Chasing aqueous biphasic programs from easy salts by exploring the LiTFSI/LiCl/H2O part diagram. ACS Cent. Sci. 5, 640–643 (2019).

    CAS
    Article

    Google Scholar

  • 24.Dubouis, N., France-Lanord, A., Brige, A., Salanne, M., & Grimaud, A. Anion particular results drive the formation of Li-salt based mostly aqueous biphasic programs. J. Phys. Chem. B 125, 5365–5372 (2021).

    CAS
    Article

    Google Scholar

  • 25.Soubeyroux, J. L., Cros, C., Gang, W., Kanno, R. & Pouchard, M. Neutron diffraction investigation of the cationic distribution within the construction of the spinel-type stable options Li2−2xM1+xCl4 (M = Mg, V): correlation with the ionic conductivity and NMR information. Solid State Ion. 15, 293–300 (1985).

    CAS
    Article

    Google Scholar

  • 26.Xin, N., Sun, Y., He, M., Radke, C. J. & Prausnitz, J. M. Solubilities of six lithium salts in 5 non-aqueous solvents and in a number of of their binary mixtures. Fluid Phase Equilib. 461, 1–7 (2018).

    CAS
    Article

    Google Scholar

  • 27.McEldrew, M., Goodwin, Z. A. H., Bi, S., Bazant, M. Z. & Kornyshev, A. A. Theory of ion aggregation and gelation in super-concentrated electrolytes. J. Chem. Phys. 152, 234506 (2020).

    CAS
    Article

    Google Scholar

  • 28.Marchandier, T. et al. Crystallographic and magnetic buildings of the VI3 and LiVI3 van der Waals compounds. Phys. Rev. B 104, 014105
  • 29.

    Takada, Ok., Yamada, Y. & Yamada, A. Optimized nonflammable concentrated electrolytes by introducing a low-dielectric diluent. ACS Appl. Mater. Interfaces 11, 35770–35776 (2019).

    CAS
    Article

    Google Scholar

  • 30Richards, W. D., Miara, L. J., Wang, Y., Kim, J. C. & Ceder, G. Interface stability in solid-state batteries. Chem. Mater. 28, 266–273 (2016).

    CAS
    Article

    Google Scholar

  • 31.Famprikis, T., Canepa, P., Dawson, J. A., Islam, M. S. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019).

    CAS
    Article

    Google Scholar

  • 32.Liu, Z. et al. Anomalous excessive ionic conductivity of nanoporous β‑Li3PS4. https://doi.org/10.1021/ja3110895 (2013).
  • 33.Herklotz, M. et al. A novel high-throughput setup for in situ powder diffraction on coin cell batteries. J. Appl. Crystallogr. 49, 340–345 (2016).

    CAS
    Article

    Google Scholar

  • 34.Avdeev, M. & Hester, J. R. ECHIDNA: a decade of high-resolution neutron powder diffraction at OPAL. J. Appl. Crystallogr. 51, 1597–1604 (2018).

    CAS
    Article

    Google Scholar

  • 35.Briois, V. et al. ROCK: the brand new Quick-EXAFS beamline at SOLEIL. J. Phys. Conf. Ser. 712, 012149 (2016).

    Article

    Google Scholar

  • 36.Leriche, J. B. et al. An electrochemical cell for operando examine of lithium batteries utilizing synchrotron radiation. J. Electrochem. Soc. 157, A606–A610 (2010).

    CAS
    Article

    Google Scholar

  • TAGS
  • electrochemistry 12
  • electrochemistry acs
  • electrochemistry emf
  • electrochemistry frq
  • electrochemistry gif
  • electrochemistry ia
  • electrochemistry kit
  • electrochemistry pdf
  • electrochemistry pdf ncert
  • electrochemistry ppt
  • n4enews.in
  • News4Ever
Previous articleBioresorbable Photocurable Adhesives As Functional Interfaces Between Flexible Bioelectronic Devices And Soft Biological Tissues – Nature Materials

LEAVE A REPLY

Please enter your comment!
Please enter your name here