[ad_1]

  • 1.

    Mogg, L. et al. Atomically skinny micas as proton-conducting membranes. Nat. Nanotechnol. 14, 962–966 (2019).

    CAS
    Article

    Google Scholar

  • 2.

    Gao, J. et al. Kirigami nanofluidics. Mater. Chem. Front. 2, 475–482 (2018).

    CAS
    Article

    Google Scholar

  • 3.

    Liu, M.-L. et al. Two-dimensional nanochannel arrays based mostly on versatile montmorillonite membranes. ACS Appl. Mater. Interfaces 10, 44915–44923 (2018).

    CAS
    Article

    Google Scholar

  • 4.

    Shao, J.-J., Raidongia, Ok., Koltonow, A. R. & Huang, J. Self-assembled two-dimensional nanofluidic proton channels with excessive thermal stability. Nat. Commun. 6, 7602 (2015).

    Article

    Google Scholar

  • 5.

    Gao, J., Feng, Y., Guo, W. & Jiang, L. Nanofluidics in two-dimensional layered supplies: inspirations from nature. Chem. Soc. Rev. 46, 5400–5424 (2017).

    CAS
    Article

    Google Scholar

  • 6.

    Huang, Ok. et al. Cation-controlled wetting properties of vermiculite membranes and its promise for fouling resistant oil–water separation. Nat. Commun. 11, 1097 (2020).

    CAS
    Article

    Google Scholar

  • 7.

    Helfferich, F. Ion Exchange (McGraw Hill, 1962).

  • 8.

    Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S. & Coleman, J. N. Liquid exfoliation of layered supplies. Science 340, 1226419 (2013).

    Article

    Google Scholar

  • 9.

    Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A. Ok. Unimpeded permeation of water by helium-leak–tight graphene-based membranes. Science 335, 442–444 (2012).

    CAS
    Article

    Google Scholar

  • 10.

    Stein, D., Kruithof, M. & Dekker, C. Surface-charge-governed ion transport in nanofluidic channels. Phys. Rev. Lett. 93, 035901 (2004).

    Article

    Google Scholar

  • 11.

    Alcantar, N., Israelachvili, J. & Boles, J. Forces and ionic transport between mica surfaces: implications for stress resolution. Geochim. Cosmochim. Acta 67, 1289–1304 (2003).

    CAS
    Article

    Google Scholar

  • 12.

    Cheng, L., Fenter, P., Nagy, Ok. L., Schlegel, M. L. & Sturchio, N. C. Molecular-scale density oscillations in water adjoining to a mica floor. Phy. Rev. Lett. 87, 156103 (2001).

    CAS
    Article

    Google Scholar

  • 13.

    Martin-Jimenez, D., Chacon, E., Tarazona, P. & Garcia, R. Atomically resolved three-dimensional buildings of electrolyte aqueous options close to a strong floor. Nat. Commun. 7, 12164 (2016).

    CAS
    Article

    Google Scholar

  • 14.

    Fuller, A. J. et al. Caesium incorporation and retention in illite interlayers. Appl. Clay Sci. 108, 128–134 (2015).

    CAS
    Article

    Google Scholar

  • 15.

    Brown, G., Nadeau, P., Fowden, L., Barrer, R. M. & Tinker, P. B. Crystal buildings of clay minerals and associated phyllosilicatÿes. Phil. Trans. R. Soc. A 311, 221–240 (1984).

    CAS

    Google Scholar

  • 16.

    Klobe, W. D. & Gast, R. G. Reactions affecting cation trade kinetics in vermiculite. Soil Sci. Soc. Am. J. 31, 744–749 (1967).

    CAS
    Article

    Google Scholar

  • 17.

    Taniguchi, Ok. et al. Transport and redistribution of radiocesium in Fukushima fallout by rivers. Environ. Sci. Technol. 53, 12339–12347 (2019).

    CAS
    Article

    Google Scholar

  • 18.

    Haigh, S. J. et al. Cross-sectional imaging of particular person layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11, 764–767 (2012).

    CAS
    Article

    Google Scholar

  • 19.

    Walker, G. F. Diffusion of exchangeable cations in vermiculite. Nature 184, 1392–1393 (1959).

    CAS
    Article

    Google Scholar

  • 20.

    Sato, H., Yui, M. & Yoshikawa, H. Ionic diffusion coefficients of Cs+, Pb2+, Sm3+, Ni2+, SeO42− and TcO4 in free water decided from conductivity measurements. J. Nucl. Sci. Technol. 33, 950–955 (1996).

    CAS
    Article

    Google Scholar

  • 21.

    Jacobs, D. G. Cesium trade by vermiculite. In Second Ground Disposal of Radioactive Wastes Conference (eds Morgan, J. M. et al.) 282–291 (US Department of Energy, 1962).

  • 22.

    Tester, C. C., Aloni, S., Gilbert, B. & Banfield, J. F. Short- and long-range engaging forces that affect the construction of montmorillonite osmotic hydrates. Langmuir 32, 12039–12046 (2016).

    CAS
    Article

    Google Scholar

  • 23.

    Kleijn, W. B. & Oster, J. D. A mannequin of clay swelling and tactoid formation. Clays Clay Miner. 30, 383–390 (1982).

    CAS
    Article

    Google Scholar

  • 24.

    Ishikawa, R. et al. Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. Nat. Mater. 10, 278–281 (2011).

    CAS
    Article

    Google Scholar

  • 25.

    Sakuma, H. & Kawamura, Ok. Structure and dynamics of water on Li+-, Na+-, Ok+-, Cs+-, H3O+-exchanged muscovite surfaces: a molecular dynamics examine. Geochim. Cosmochim. Acta 75, 63–81 (2011).

  • 26.

    Lee, S. S., Fenter, P., Nagy, Ok. L. & Sturchio, N. C. Monovalent ion adsorption on the muscovite (001)–resolution interface: relationships amongst ion protection and speciation, interfacial water construction, and substrate leisure. Langmuir 28, 8637–8650 (2012).

    CAS
    Article

    Google Scholar

  • 27.

    Lee, S. S., Fenter, P., Nagy, Ok. L. & Sturchio, N. C. Real-time remark of cation trade kinetics and dynamics on the muscovite-water interface. Nat. Commun. 8, 15826 (2017).

    Article

    Google Scholar

  • 28.

    Esfandiar, A. et al. Size impact in ion transport by angstrom-scale slits. Science 358, 511–513 (2017).

    CAS
    Article

    Google Scholar

  • 29.

    Briggs, N. et al. Atomically skinny half-van der Waals metals enabled by confinement heteroepitaxy. Nat. Mater. 19, 637–643 (2020).

    CAS
    Article

    Google Scholar

  • 30.

    Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).

    CAS
    Article

    Google Scholar

  • 31.

    Roger, M. et al. Patterning of sodium ions and the management of electrons in sodium cobaltate. Nature 445, 631–634 (2007).

    CAS
    Article

    Google Scholar

  • 32.

    Hunter, J. D. Matplotlib: a 2D graphics surroundings. Comput. Sci. Eng. 9, 90–95 (2007).

    Article

    Google Scholar

  • 33.

    Hjorth Larsen, A. et al. The atomic simulation surroundings—a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

    Article

    Google Scholar

  • 34.

    Koch, C. T. Determination of Core Structure Periodicity and Point Defect Density Along Dislocations. PhD thesis, Arizona State Univ. (2002).

[ad_2]

LEAVE A REPLY

Please enter your comment!
Please enter your name here