• 1.

    Mannix, A. J. et al. Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350, 1513–1516 (2015).

    CAS
    Article

    Google Scholar

  • 2.

    Feng, B. et al. Experimental realization of two-dimensional boron sheets. Nat. Chem. 8, 563–568 (2016).

    CAS
    Article

    Google Scholar

  • 3.

    Zhai, H.-J., Kiran, B., Li, J. & Wang, L.-S. Hydrocarbon analogues of boron clusters—planarity, aromaticity and antiaromaticity. Nat. Mater. 2, 827–833 (2003).

    CAS
    Article

    Google Scholar

  • 4.

    Zhai, H.-J., Alexandrova, A. N., Birch, Okay. A., Boldyrev, A. I. & Wang, L.-S. Hepta- and octacoordinate boron in molecular wheels of eight- and nine-atom boron clusters: remark and affirmation. Angew. Chem. Int. Ed. Engl. 42, 6004–6008 (2003).

    CAS
    Article

    Google Scholar

  • 5.

    Ogitsu, T., Schwegler, E. & Galli, G. β-Rhombohedral boron: on the crossroads of the chemistry of boron and the physics of frustration. Chem. Rev. 113, 3425–3449 (2013).

    CAS
    Article

    Google Scholar

  • 6.

    Ogitsu, T. et al. Imperfect crystal and weird semiconductor: boron, a annoyed ingredient. J. Am. Chem. Soc. 131, 1903–1909 (2009).

    CAS
    Article

    Google Scholar

  • 7.

    Mannix, A. J., Zhang, Z., Guisinger, N. P., Yakobson, B. I. & Hersam, M. C. Borophene as a prototype for artificial 2D supplies growth. Nat. Nanotechnol. 13, 444–450 (2018).

    CAS
    Article

    Google Scholar

  • 8.

    Liu, X., Zhang, Z., Wang, L., Yakobson, B. I. & Hersam, M. C. Intermixing and periodic self-assembly of borophene line defects. Nat. Mater. 17, 783–788 (2018).

    CAS
    Article

    Google Scholar

  • 9.

    Liu, X. et al. Self-assembly of electronically abrupt borophene/natural lateral heterostructures. Sci. Adv. 3, e1602356 (2017).

    Article

    Google Scholar

  • 10.

    Liu, X. & Hersam, M. C. Borophene-graphene heterostructures. Sci. Adv. 5, eaax6444 (2019).

    CAS
    Article

    Google Scholar

  • 11.

    Feng, B. et al. Dirac fermions in borophene. Phys. Rev. Lett. 118, 096401 (2017).

    Article

    Google Scholar

  • 12.

    Kiraly, B. et al. Borophene synthesis on Au(111). ACS Nano 13, 3816–3822 (2019).

    CAS
    Article

    Google Scholar

  • 13.

    Wu, R. et al. Large-area single-crystal sheets of borophene on Cu(111) surfaces. Nat. Nanotechnol. 14, 44–49 (2019).

    CAS
    Article

    Google Scholar

  • 14.

    Li, W. et al. Experimental realization of honeycomb borophene. Sci. Bull. 63, 282–286 (2018).

    CAS
    Article

    Google Scholar

  • 15.

    Vinogradov, N. A., Lyalin, A., Taketsugu, T., Vinogradov, A. S. & Preobrajenski, A. Single-phase borophene on Ir(111): formation, construction, and decoupling from the help. ACS Nano 13, 14511–14518 (2019).

    CAS
    Article

    Google Scholar

  • 16.

    Tang, H. & Ismail-Beigi, S. Self-doping in boron sheets from first ideas: a path to structural design of steel boride nanostructures. Phys. Rev. B 80, 134113 (2009).

    Article

    Google Scholar

  • 17.

    Zhang, Z., Yang, Y., Penev, E. S. & Yakobson, B. I. Elasticity, flexibility, and very best energy of borophenes. Adv. Funct. Mater. 27, 1605059 (2017).

    Article

    Google Scholar

  • 18.

    Penev, E. S., Kutana, A. & Yakobson, B. I. Can two-dimensional boron superconduct? Nano Lett. 16, 2522–2526 (2016).

    CAS
    Article

    Google Scholar

  • 19.

    Yang, J. et al. Interfacial properties of borophene contacts with two-dimensional semiconductors. Phys. Chem. Chem. Phys. 19, 23982–23989 (2017).

    CAS
    Article

    Google Scholar

  • 20.

    Huang, Y., Shirodkar, S. N. & Yakobson, B. I. Two-dimensional boron polymorphs for seen vary plasmonics: a first-principles exploration. J. Am. Chem. Soc. 139, 17181–17185 (2017).

    CAS
    Article

    Google Scholar

  • 21.

    Zhang, X. et al. Borophene as an especially excessive capability electrode materials for Li-ion and Na-ion batteries. Nanoscale 8, 15340–15347 (2016).

    CAS
    Article

    Google Scholar

  • 22.

    Shukla, V., Wärnå, J., Jena, N. Okay., Grigoriev, A. & Ahuja, R. Toward the belief of 2D borophene based mostly fuel sensor. J. Phys. Chem. C 121, 26869–26876 (2017).

    CAS
    Article

    Google Scholar

  • 23.

    Gao, N., Wu, X., Jiang, X., Bai, Y. & Zhao, J. Structure and stability of bilayer borophene: the roles of hexagonal holes and interlayer bonding. FlatChem 7, 48–54 (2018).

    CAS
    Article

    Google Scholar

  • 24.

    Ma, F. et al. Graphene-like two-dimensional ionic boron with double Dirac cones at ambient situation. Nano Lett. 16, 3022–3028 (2016).

    CAS
    Article

    Google Scholar

  • 25.

    Zhou, X.-F. et al. Two-dimensional magnetic boron. Phys. Rev. B 93, 085406 (2016).

    Article

    Google Scholar

  • 26.

    Xu, S.-G., Zheng, B., Xu, H. & Yang, X.-B. Ideal nodal line semimetal in a two-dimensional boron bilayer. J. Phys. Chem. C 123, 4977–4983 (2019).

    CAS
    Article

    Google Scholar

  • 27.

    Zhong, H., Huang, Okay., Yu, G. & Yuan, S. Electronic and mechanical properties of few-layer borophene. Phys. Rev. B 98, 054104 (2018).

    CAS
    Article

    Google Scholar

  • 28.

    Liu, X. et al. Geometric imaging of borophene polymorphs with functionalized probes. Nat. Commun. 10, 1642 (2019).

    Article

    Google Scholar

  • 29.

    Hapala, P. et al. Mechanism of high-resolution STM/AFM imaging with functionalized ideas. Phys. Rev. B 90, 085421 (2014).

    CAS
    Article

    Google Scholar

  • 30.

    Liu, X., Wang, L., Yakobson, B. I. & Hersam, M. C. Nanoscale probing of image-potential states and electron switch doping in borophene polymorphs. Nano Lett. 21, 1169–1174 (2021).

    CAS
    Article

    Google Scholar

  • 31.

    Karmodak, N. & Jemmis, E. D. Metal templates and boron sources controlling borophene buildings: an ab initio research. J. Phys. Chem. C 122, 2268–2274 (2018).

    CAS
    Article

    Google Scholar

  • 32.

    Zheng, B. et al. Highly efficient work operate discount of α-borophene through caesium ornament: a first-principles investigation. Adv. Theory Simul. 3, 1900249 (2020).

    CAS
    Article

    Google Scholar

  • 33.

    Lu, C.-I. et al. Graphite edge managed registration of monolayer MoS2 crystal orientation. Appl. Phys. Lett. 106, 181904 (2015).

    Article

    Google Scholar

  • 34.

    Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS
    Article

    Google Scholar

  • 35.

    Blöchl, P. E. Projector augmented-wave technique. Phys. Rev. B 50, 17953–17979 (1994).

    Article

    Google Scholar

  • 36.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS
    Article

    Google Scholar

  • 37.

    Grimme, S. Semiempirical GGA-type density useful constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    CAS
    Article

    Google Scholar

  • 38.

    Krejčí, O., Hapala, P., Ondráček, M. & Jelínek, P. Principles and simulations of high-resolution STM imaging with a versatile tip apex. Phys. Rev. B 95, 045407 (2017).

    Article

    Google Scholar

LEAVE A REPLY

Please enter your comment!
Please enter your name here