• 1.

    Fradkin, E., Kivelson, S. A., Lawler, M. J., Eisenstein, J. P. & Mackenzie, A. P. Nematic Fermi fluids in condensed matter physics. Annu. Rev. Condens. Matter Phys. 1, 153–178 (2010).

    CAS
    Article

    Google Scholar

  • 2.

    Lilly, M. P., Cooper, K. B., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Evidence for an anisotropic state of two-dimensional electrons in excessive Landau ranges. Phys. Rev. Lett. 82, 394–397 (1999).

    CAS
    Article

    Google Scholar

  • 3.

    Du, R. R. et al. Strongly anisotropic transport in greater two-dimensional Landau ranges. Solid State Commun. 109, 389–394 (1999).

    CAS
    Article

    Google Scholar

  • 4.

    Borzi, R. A. et al. Formation of a nematic fluid at excessive fields in Sr3Ru2O7. Science 315, 214–217 (2007).

    CAS
    Article

    Google Scholar

  • 5.

    Fernandes, R. M. et al. Effects of nematic fluctuations on the elastic properties of iron arsenide superconductors. Phys. Rev. Lett. 105, 157003 (2010).

    CAS
    Article

    Google Scholar

  • 6.

    Chu, J.-H. et al. In-plane resistivity anisotropy in an underdoped iron arsenide superconductor. Science 329, 824–826 (2010).

    CAS
    Article

    Google Scholar

  • 7.

    Hinkov, V. et al. Electronic liquid crystal state within the high-temperature superconductor YBa2Cu3O6.45. Science 319, 597–600 (2008).

    CAS
    Article

    Google Scholar

  • 8.

    Ando, Y., Segawa, K., Komiya, S. & Lavrov, A. N. Electrical resistivity anisotropy from self-organized one dimensionality in high-temperature superconductors. Phys. Rev. Lett. 88, 137005 (2002).

    Article
    CAS

    Google Scholar

  • 9.

    Cao, Y. et al. Nematicity and competing orders in superconducting magic-angle graphene. Science 372, 264–271 (2021).

    CAS
    Article

    Google Scholar

  • 10.

    Shapiro, M. C., Hristov, A. T., Palmstrom, J. C., Chu, J. & Fisher, I. R. Measurement of the B1g and B2g elements of the elastoresistivity tensor for tetragonal supplies through transverse resistivity configurations. Rev. Sci. Instrum. 87, 063902 (2016).

    CAS
    Article

    Google Scholar

  • 11.

    Ishida, S. et al. Anisotropy of the in-plane resistivity of underdoped Ba(Fe1–xCox)2As2 superconductors induced by impurity scattering within the antiferromagnetic orthorhombic section. Phys. Rev. Lett. 110, 207001 (2013).

    CAS
    Article

    Google Scholar

  • 12.

    Gastiasoro, M. N., Paul, I., Wang, Y., Hirschfeld, P. J. & Andersen, B. M. Emergent defect states as a supply of resistivity anisotropy within the nematic section of iron pnictides. Phys. Rev. Lett. 113, 127001 (2014).

    Article
    CAS

    Google Scholar

  • 13.

    Fernandes, R. M., Abrahams, E. & Schmalian, J. Anisotropic in-plane resistivity within the nematic section of the iron pnictides. Phys. Rev. Lett. 107, 217002 (2011).

    Article
    CAS

    Google Scholar

  • 14.

    Kuo, H. H. & Fisher, I. R. Effect of dysfunction on the resistivity anisotropy close to the digital nematic section transition in pure and electron-doped BaFe2As2. Phys. Rev. Lett. 112, 227001 (2014).

    Article
    CAS

    Google Scholar

  • 15.

    Lederer, S., Schattner, Y., Berg, E. & Kivelson, S. A. Enhancement of superconductivity close to a nematic quantum important level. Phys. Rev. Lett. 114, 097001 (2015).

    CAS
    Article

    Google Scholar

  • 16.

    Chen, X., Maiti, S., Fernandes, R. M. & Hirschfeld, P. J. Nematicity and superconductivity: competitors versus cooperation. Phys. Rev. B 102, 184512 (2020).

    CAS
    Article

    Google Scholar

  • 17.

    Kuo, H. H., Chu, J. H., Palmstrom, J. C., Kivelson, S. A. & Fisher, I. R. Ubiquitous signatures of nematic quantum criticality in optimally doped Fe-based superconductors. Science 352, 958–962 (2016).

    CAS
    Article

    Google Scholar

  • 18.

    Yoshizawa, M. et al. Structural quantum criticality and superconductivity in iron-based superconductor Ba(Fe1–xCox)2As2. J. Phys. Soc. Jpn 81, 024604 (2012).

    Article
    CAS

    Google Scholar

  • 19.

    Tanatar, M. A. et al. Uniaxial-strain mechanical detwinning of CaFe2As2 and BaFe2As2 crystals: optical and transport research. Phys. Rev. B 81, 184508 (2010).

    Article
    CAS

    Google Scholar

  • 20.

    Nandi, S. et al. Anomalous suppression of the orthorhombic lattice distortion in superconducting Ba(Fe1–xCox)2As2 single crystals. Phys. Rev. Lett. 104, 057006 (2010).

    CAS
    Article

    Google Scholar

  • 21.

    Kim, M. G. et al. Character of the structural and magnetic section transitions within the mother or father and electron-doped BaFe2As2 compounds. Phys. Rev. B 83, 134522 (2011).

    Article
    CAS

    Google Scholar

  • 22.

    Fujii, C. et al. Anisotropic Grüneisen parameter and numerous order parameter fluctuations in iron-based superconductor Ba(Fe1–xCox)2As2. J. Phys. Soc. Jpn 87, 074710 (2018).

    Article

    Google Scholar

  • 23.

    Hicks, C. W., Barber, M. E., Edkins, S. D., Brodsky, D. O. & Mackenzie, A. P. Piezoelectric-based equipment for pressure tuning. Rev. Sci. Instrum. 85, 065003 (2014).

    Article
    CAS

    Google Scholar

  • 24.

    Böhmer, A. E. et al. Nematic susceptibility of hole-doped and electron-doped BaFe2As2 iron-based superconductors from shear modulus measurements. Phys. Rev. Lett. 112, 047001 (2014).

    Article
    CAS

    Google Scholar

  • 25.

    Carpenter, M. et al. Ferroelasticity, anelasticity and magnetoelastic rest in Co-doped iron pnictide: Ba(Fe0.957Co0.043)2As2. J. Phys. Condens. Matter 31, 155401 (2019).

    CAS
    Article

    Google Scholar

  • 26.

    Palmstrom, J. C., Hristov, A. T., Kivelson, S. A., Chu, J. H. & Fisher, I. R. Critical divergence of the symmetric (A1g) nonlinear elastoresistance close to the nematic transition in an iron-based superconductor. Phys. Rev. B 96, 205133 (2017).

    Article

    Google Scholar

  • 27.

    Analytis, J. G. et al. Quantum oscillations within the mother or father pnictide BaFe2As2: itinerant electrons within the reconstructed state. Phys. Rev. B 80, 064507 (2009).

    Article
    CAS

    Google Scholar

  • 28.

    Shimojima, T. et al. Orbital-dependent modifications of digital construction throughout the magnetostructural transition in BaFe2As2. Phys. Rev. Lett. 104, 057002 (2010).

    CAS
    Article

    Google Scholar

  • 29.

    Nakajima, M. et al. Unprecedented anisotropic metallic state in undoped iron arsenide BaFe2As2 revealed by optical spectroscopy. Proc. Natl Acad. Sci. USA 108, 12238–12242 (2011).

    CAS
    Article

    Google Scholar

  • 30.

    Watson, M. D. et al. Probing the reconstructed Fermi floor of antiferromagnetic BaFe2As2 in a single area. npj Quantum Mater. 4, 36 (2019).

    Article
    CAS

    Google Scholar

  • 31.

    Tanatar, M. A. et al. Direct imaging of the structural domains within the iron pnictides AFe2As2 (A = Ca,Sr,Ba). Phys. Rev. B 79, 180508(R) (2009).

    Article
    CAS

    Google Scholar

  • 32.

    Tanatar, M. A. et al. Origin of the resistivity anisotropy within the nematic section of FeSe. Phys. Rev. Lett. 117, 127001 (2016).

    CAS
    Article

    Google Scholar

  • 33.

    Liu, L. et al. In-plane digital anisotropy within the antiferromagnetic orthorhombic section of isovalent-substituted Ba(Fe1–xRux)2As2. Phys. Rev. B 92, 094503 (2015).

    Article
    CAS

    Google Scholar

  • 34.

    Blomberg, E. C. et al. In-plane anisotropy {of electrical} resistivity in strain-detwinned SrFe2As2. Phys. Rev. B 83, 134505 (2011).

    Article
    CAS

    Google Scholar

  • 35.

    Fisher, I. R., Degiorgi, L. & Shen, Z. X. In-plane digital anisotropy of underdoped ‘122’ Fe-arsenide superconductors revealed by measurements of detwinned single crystals. Rep. Prog. Phys. 74, 124506 (2011).

    Article
    CAS

    Google Scholar

  • 36.

    Paul, I. & Garst, M. Lattice results on nematic quantum criticality in metals. Phys. Rev. Lett. 118, 227601 (2017).

    CAS
    Article

    Google Scholar

  • 37.

    Ikeda, M. S. et al. Elastocaloric signature of nematic fluctuations. Preprint at https://arxiv.org/abs/2101.00080 (2020).

  • 38.

    Hong, X. et al. Evolution of the nematic susceptibility in LaFe1-xCoxAsO. Phys. Rev. Lett. 125, 067001 (2020).

    CAS
    Article

    Google Scholar

  • 39.

    Hosoi, S. et al. Nematic quantum important level with out magnetism in FeSe1–xSx superconductors. Proc. Natl Acad. Sci. USA 113, 8139–8143 (2016).

    CAS
    Article

    Google Scholar

  • 40.

    Breitkreiz, M., Brydon, P. M. R. & Timm, C. Resistive anisotropy as a result of spin-fluctuation scattering within the nematic section of iron pnictides. Phys. Rev. B 90, 121104 (2014).

    Article
    CAS

    Google Scholar

  • 41.

    Kissikov, T. et al. Uniaxial pressure management of spin-polarization in multicomponent nematic order of BaFe2As2. Nat. Commun. 9, 1058 (2018).

    CAS
    Article

    Google Scholar

  • 42.

    Fernandes, R. M., Orth, P. P. & Schmalian, J. Intertwined vestigial order in quantum supplies: nematicity and past. Annu. Rev. Condens. Matter Phys. 10, 133–154 (2019).

    Article

    Google Scholar

  • 43.

    Andrade, E. F. et al. Visualizing the nonlinear coupling between pressure and digital nematicity within the iron pnictides by elasto-scanning tunneling spectroscopy. Preprint at https://arxiv.org/abs/1812.05287 (2018).

  • 44.

    Bartlett, J. et al. Relationship between transport anisotropy and nematicity in FeSe. Phys. Rev. X 33, 021038 (2021).


    Google Scholar

  • 45.

    Schmidt, J. et al. Nematicity within the superconducting blended state of pressure detwinned underdoped Ba(Fe1–xCox)2As2. Phys. Rev. B 99, 064515 (2019).

    CAS
    Article

    Google Scholar

  • 46.

    Pfau, H. et al. Detailed band construction of twinned and detwinned BaFe2As2 studied with angle-resolved photoemission spectroscopy. Phys. Rev. B 99, 035118 (2019).

    CAS
    Article

    Google Scholar

  • 47.

    Zheng, X. Y., Feng, R., Ellis, D. S. & Kim, Y. J. Bulk-sensitive imaging of dual domains in La2–xSrxCuO4 beneath uniaxial stress. Appl. Phys. Lett. 113, 071906 (2018).

    Article
    CAS

    Google Scholar

  • 48.

    Kim, H. H. et al. Uniaxial stress management of competing orders in a high-temperature superconductor. Science 362, 1040–1044 (2018).

    CAS
    Article

    Google Scholar

  • 49.

    Ikeda, M. S. et al. Symmetric and antisymmetric pressure as steady tuning parameters for digital nematic order. Phys. Rev. B 98, 245133 (2018).

    CAS
    Article

    Google Scholar

  • 50.

    Dhital, C. et al. Effect of uniaxial pressure on the structural and magnetic section transitions in BaFe2As2. Phys. Rev. Lett. 108, 087001 (2012).

    Article
    CAS

    Google Scholar

  • 51.

    Lu, X. et al. Nematic spin correlations within the tetragonal state of uniaxial-strained BaFe2–xNixAs2. Science 345, 657–660 (2014).

    CAS
    Article

    Google Scholar

  • 52.

    Malinowski, P. et al. Suppression of superconductivity by anisotropic pressure close to a nematic quantum important level. Nat. Phys.

LEAVE A REPLY

Please enter your comment!
Please enter your name here