• 1.Han, M., Gao, X., Su, J. Z. & Nie, S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 19, 631–635 (2001).

    CAS
    Article

    Google Scholar

  • 2.Giepmans, B. N. G., Adams, S. R., Ellisman, M. H. & Tsien, R. Y. The fluorescent toolbox for assessing protein location and performance. Science 312, 217–224 (2006).

    CAS
    Article

    Google Scholar

  • 3.Grimm, J. B. et al. A common technique to fine-tune fluorophores for live-cell and in vivo imaging. Nat. Methods 14, 987–994 (2017).

    CAS
    Article

    Google Scholar

  • 4.Zhou, B., Shi, B., Jin, D. & Liu, X. Controlling upconversion nanocrystals for rising functions. Nat. Nanotechnol. 10, 924–936 (2015).

    CAS
    Article

    Google Scholar

  • 5.Huang, J. et al. Molecular optical imaging probes for early prognosis of drug-induced acute kidney harm. Nat. Mater. 18, 1133–1143 (2019).

    CAS
    Article

    Google Scholar

  • 6.Stack, E. C., Wang, C., Roman, Ok. A. & Hoyt, C. C. Multiplexed immunohistochemistry, imaging, and quantitation: a assessment, with an evaluation of Tyramide sign amplification, multispectral imaging and multiplex evaluation. Methods 70, 46–58 (2014).

    CAS
    Article

    Google Scholar

  • 7.Gao, R. et al. Cortical column and whole-brain imaging with molecular distinction and nanoscale decision. Science 363, eaau8302 (2019).

    CAS
    Article

    Google Scholar

  • 8.Cai, R. et al. Panoptic imaging of clear mice reveals whole-body neuronal projections and cranium–meninges connections. Nat. Neurosci. 22, 317–327 (2019).

    CAS
    Article

    Google Scholar

  • 9.Abdeladim, L. et al. Multicolor multiscale mind imaging with chromatic multiphoton serial microscopy. Nat. Commun. 10, 1662 (2019).

    Article
    CAS

    Google Scholar

  • 10.

    Hong, G., Antaris, A. L. & Dai, H. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1, 0010 (2017).

    CAS
    Article

    Google Scholar

  • 11.Antaris, A. L. et al. A small-molecule dye for NIR-II imaging. Nat. Mater. 15, 235–242 (2015).

    Article
    CAS

    Google Scholar

  • 12.Hu, Z. et al. First-in-human liver-tumour surgical procedure guided by multispectral fluorescence imaging within the seen and near-infrared-I/II home windows. Nat. Biomed. Eng. 4, 259–271 (2019).

    Article

    Google Scholar

  • 13.Wang, S. et al. Anti-quenching NIR-II molecular fluorophores for in vivo high-contrast imaging and pH sensing. Nat. Commun. 10, 1058 (2019).

    Article
    CAS

    Google Scholar

  • 14.Cosco, E. D. et al. Flavylium polymethine fluorophores for imaging within the near- and shortwave infrared. Angew. Chem. Int. Ed. 56, 13126–13129 (2017).

    CAS
    Article

    Google Scholar

  • 15.

    Cosco, E. D. et al. Shortwave infrared polymethine fluorophores matched to excitation lasers allow non-invasive, multicolour in vivo imaging in actual time. Nat. Chem. 12, 1123–1130 (2020).

    Article
    CAS

    Google Scholar

  • 16.Li, Y. et al. Design of AIEgens for near-infrared IIb imaging by structural modulation at molecular and morphological ranges. Nat. Commun. 11, 1255 (2020).

    Article
    CAS

    Google Scholar

  • 17.Bruns, O. T. et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat. Biomed. Eng. 1, 0056 (2017).

    CAS
    Article

    Google Scholar

  • 18.Zhang, M. et al. Bright quantum dots emitting at 1,600 nm within the NIR-IIb window for deep tissue fluorescence imaging. Proc. Natl Acad. Sci. USA 115, 6590–6595 (2018).

    CAS
    Article

    Google Scholar

  • 19.Eliseeva, S. V. & Bunzli, J.-C. G. Lanthanide luminescence for useful supplies and bio-sciences. Chem. Soc. Rev. 39, 189–227 (2010).

    CAS
    Article

    Google Scholar

  • 20.Doffek, C. et al. Understanding the quenching results of fragrant C–H- and C–D-oscillators in near-IR lanthanoid luminescence. J. Am. Chem. Soc. 134, 16413–16423 (2012).

    CAS
    Article

    Google Scholar

  • 21.Ye, H. Q. et al. Organo-erbium programs for optical amplification at telecommunications wavelengths. Nat. Mater. 13, 382–386 (2014).

    CAS
    Article

    Google Scholar

  • 22.Mech, A. et al. Sensitized NIR erbium(III) emission in confined geometries: a brand new technique for mild emitters in telecom functions. J. Am. Chem. Soc. 132, 4574–4576 (2010).

    CAS
    Article

    Google Scholar

  • 23.Mancino, G. et al. Dramatic Increases within the lifetime of the Er3+ ion in a molecular complicated utilizing a perfluorinated imidodiphosphinate sensitizing ligand. J. Am. Chem. Soc. 127, 524–525 (2005).

    CAS
    Article

    Google Scholar

  • 24.Chow, C. Y. et al. Ga3+/Ln3+ metallacrowns: a promising household of extremely luminescent lanthanide complexes that covers seen and near-infrared domains. J. Am. Chem. Soc. 138, 5100–5109 (2016).

    CAS
    Article

    Google Scholar

  • 25.Trivedi, E. R. et al. Highly emitting near-infrared lanthanide ‘encapsulated sandwich’ metallacrown complexes with excitation shifted towards decrease power. J. Am. Chem. Soc. 136, 1526–1534 (2014).

    CAS
    Article

    Google Scholar

  • 26.Nonat, A. et al. Room temperature molecular up conversion in answer. Nat. Commun. 7, 11978 (2016).

    CAS
    Article

    Google Scholar

  • 27.Kang, T. S. et al. Near-infrared electroluminescence from lanthanide tetraphenylporphyrin:polystyrene blends. Adv. Mater. 15, 1093–1097 (2003).

    CAS
    Article

    Google Scholar

  • 28.Zhang, J., Badger, P. D., Geib, S. J. & Petoud, S. Sensitization of near-infrared-emitting lanthanide cations in answer by tropolonate ligands. Angew. Chem. Int. Ed. 44, 2508–2512 (2005).

    CAS
    Article

    Google Scholar

  • 29.Artizzu, F., Mercuri, M. L., Serpe, A. & Deplano, P. NIR-emissive erbium–quinolinolate complexes. Coord. Chem. Rev. 255, 2514–2529 (2011).

    CAS
    Article

    Google Scholar

  • 30.Yerushalmi, R., Ashur, I. & Scherz, A. in Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications (eds Grimm, B. et al.) 495–506 (Springer Netherlands, 2006).
  • 31.Hu, J. Y. et al. Highly near-IR emissive ytterbium(III) complexes with unprecedented quantum yields. Chem. Sci. 8, 2702–2709 (2017).

    CAS
    Article

    Google Scholar

  • 32.Garfield, D. J. et al. Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission. Nat. Photonics 12, 402–407 (2018).

    CAS
    Article

    Google Scholar

  • 33.Yang, E. et al. Photophysical properties and digital construction of secure, tunable artificial bacteriochlorins: extending the options of native photosynthetic pigments. J. Phys. Chem. B 115, 10801–10816 (2011).

    CAS
    Article

    Google Scholar

  • 34.Yao, Y. et al. Aromaticity versus regioisomeric impact of β-substituents in porphyrinoids. Phys. Chem. Chem. Phys. 21, 10152–10162 (2019).

    CAS
    Article

    Google Scholar

  • 35.Diao, S. et al. Fluorescence imaging in vivo at wavelengths past 1500 nm. Angew. Chem. Int. Ed. 54, 14758–14762 (2015).

    CAS
    Article

    Google Scholar

  • 36.Zhong, Y. et al. Boosting the down-shifting luminescence of rare-earth nanocrystals for organic imaging past 1500 nm. Nat. Commun. 8, 737 (2017).

    Article
    CAS

    Google Scholar

  • 37.Antaris, A. L. et al. A excessive quantum yield molecule-protein complicated fluorophore for near-infrared II imaging. Nat. Commun. 8, 15269 (2017).

    CAS
    Article

    Google Scholar

  • 38.Carr, J. A. et al. Shortwave infrared fluorescence imaging with the clinically authorised near-infrared dye indocyanine inexperienced. Proc. Natl Acad. Sci. USA 115, 4465–4470 (2018).

    CAS
    Article

    Google Scholar

  • 39.Tian, R. et al. Albumin-chaperoned cyanine dye yields superbright NIR-II fluorophore with enhanced pharmacokinetics. Sci. Adv. 5, eaaw0672 (2019).

    CAS
    Article

    Google Scholar

  • 40.Pittet, M. J., Garris, C. S., Arlauckas, S. P. & Weissleder, R. Recording the wild lives of immune cells. Sci. Immunol. 3, eaaq0491 (2018).

    Article

    Google Scholar

  • 41.Karreman, M. A. et al. Fast and exact concentrating on of single tumor cells in vivo by multimodal correlative microscopy. J. Cell Sci. 129, 444–456 (2016).

    CAS

    Google Scholar

  • 42.Fan, Y. et al. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol. 13, 941–946 (2018).

    CAS
    Article

    Google Scholar

  • 43.Wang, J. C., Murphy, I. A. & Hanson, Ok. Modulating electron switch dynamics at dye–semiconductor interfaces by way of self-assembled bilayers. J. Phys. Chem. C. 119, 3502–3508 (2015).

    CAS
    Article

    Google Scholar

  • 44.Starukhin, A., Gorski, A. & Dobkowski, J. Temperature dependence of singlet oxygen technology by totally different photosensitizers. EPJ Web Conf. 220, 01012 (2019).

    CAS
    Article

    Google Scholar

  • 45.Hartzler, D. A. et al. Triplet excited state energies and phosphorescence spectra of (bacterio)chlorophylls. J. Phys. Chem. B 118, 7221–7232 (2014).

    CAS
    Article

    Google Scholar

LEAVE A REPLY

Please enter your comment!
Please enter your name here